Sheldrick, G. M. (1992). SHELXL92. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.

Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.

Trueblood, K. N. (1984). THMV. Program for Thermal Motion Analysis. Univ. of California, Los Angeles, USA.

Acta Cryst. (1994). C50, 574-576

1,3,5-Tris[3-(2,6,6-triméthyl-1-cyclohexen-1yl)acryloyle]benzène

DARIA GINDEROW

Laboratoire de Minéralogie et Cristallographie, URA 09 CNRS, Université Pierre et Marie Curie, T16, 4 place Jussieu, 75252 Paris CEDEX 05, France

ALAIN VALLA, ZO ANDRIAMIALISOA ET MICHEL GIRAUD

Laboratoire de Chimie du Muséum National d'Histoire Naturelle, URA 401 CNRS, 63 rue Buffon, 75231 Paris CEDEX 05, France

(Reçu le 12 juillet 1993, accepté le 18 octobre 1993)

Abstract

1,3,5-Tris[3-(2,6,6-trimethyl-1-cyclohexen-1-yl)acryloyl]benzene, $C_{42}H_{54}O_3$, contains three carbonyl groups at positions 1,3,5 on a benzene ring and three cyclohexene moieties. Disorder in the crystals arises from a 1:1 mixture of two possible puckered conformations of the cyclohexene rings. The triketone investigated is analogous to compounds isolated from two African plants used in traditional folk medicine against liver diseases and lesions.

Commentaire

Récemment, quatre tricétones benzéniques ont été isolées de deux plantes africaines utilisées dans la pharmacopée traditionnelle et appartenant à la famille des Cochlospermaceae (C. tinctorium et C. planchonii) (Addae-Mensah, Waibel & Achenbach, 1985; Diallo, Vanhaellen-Frastré & Vanhaelen, 1991). Les activités hépatoprotectrices de ces plantes ont été démontrées (Dalvi & Sere, 1988) et un brevet mentionne leur utilisation pour le traitement des hépatites virales et fulminantes (Wolga, 1987). L'obtention de quantités plus importantes de ces composés ainsi que de divers analogues, par synthèse mise au point au laboratoire (Valla, Andriamialisoa, Giraud & Ginderow, 1993) permettra d'effectuer une étude biologique approfondie. Les composés naturels, du fait de leur morphologie, ne se prêtaient pas à une étude cristallographique. Un analogue parfaitement cristallisé (I) nous a permis de réaliser cette étude.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

La molécule est composée d'un groupement benzénique auquel est relié en position 1,3,5 trois groupements carbonyl, eux-mêmes liés à un groupement cyclohexène (Fig. 1). Le cycle benzénique est plan avec les groupements C=O au dessus du plan moyen pour C7A-O7A [0,019(5), 0,388(3) Å] et C7B—O7B [0,019(5),0,156 (3) Å] alors qu'il se trouve en dessous du même plan pour C7C = 0.056(5), -0.028(4)Å]. Les distances trouvées sont conformes avec celles du 1,3,5triacétylbenzène (O'Connor, 1973). En ce qui concerne les trois groupements cyclohexène, il y a contraction des distances C13—C14 avec une distance C13A—C14A égale à 1,34 (1), C13B—C14B égale à 1,25 (1) et C13C— C14C égale à 1,19(1) Å. Le cycle cyclohexène qui présente le gauchissement le plus prononcé est le cycle A. Le calcul des plans moyens passant par les différents cycles, montrent que C13A est à une distance du plan moyen de 0,342 (10) Å et C14A à 0,224 (9) Å alors que les cycles B et C se rapprochent de la planéité. Une valeur de 1,24 (2) Å a été trouvée pour le cyclohexène du 2,6-di-cis-4-hydroxyrétinoïc acid γ -lactone (Thackeray & Gafner, 1975). Les distances très courtes sont le résultat d'un désordre car ces atomes occupent une situation moyenne

Fig 1. Désignation des atomes. Les ellipsoïdes correspondent à 50% de probabilité sauf pour les atomes d'hydrogéne ou les diamètres sont arbitraires.

> Acta Crystallographica Section C ISSN 0108-2701 ©1994

entre les positions qu'ils occuperaient normalement dans les deux conformations gauches possibles du cycle cyclohexène. Le plan moyen passant par le cyclohexène B fait un angle dièdre de 57,3 (2)° avec le cycle benzénique alors que pour les cycles A et C, les angles sont de 9,8(2)et 15,1 (2)°. La cohésion cristalline est renforcée par une liaison hydrogène entre un groupement carbonyl accepteur et un H du groupement méthyl donneur, C17A-H17A1...O7Bⁱ [(i) = -x, -y, 1 - z], les distances sont de 2,61 (4) et 3,549 (7) À pour C···O avec un angle de 174 (2)°. Elles sont en accord avec celles publiées par Berkovitch-Yellin & Leiserowitz (1984) pour ce type de contact intermoléculaire. Ainsi nous sommes en présence de dimères centrosymétriques qui se développent selon la direction de l'axe b.

Radiation: Cu $K\alpha$

 $\theta = 9,17 - 13,05^{\circ}$

 $\mu = 0.50 \text{ mm}^{-1}$

T = 293 K

Prismatique

 $R_{\rm int} = 0.019$

 $\theta_{\rm max}$ = 65,04°

 $h = -14 \rightarrow 14$

 $k = -14 \rightarrow 14$

3 réflexions de référence

variation d'intensité:

fréquence: 60 min

 $\Delta \rho_{\rm max} = 0,281 \ {\rm e} \ {\rm \AA}^{-3}$

Pas de correction

d'extinction

 $\Delta \rho_{\rm min} = -0,201 \ {\rm e} \ {\rm \AA}^{-3}$

Facteurs de diffusion de

International Tables for

(1974, Tome IV) (C, O);

X-ray Crystallography

Stewart, Davidson &

Simpson (1965) (H)

< 2,6%

 $l = 0 \rightarrow 14$

Jaune

Paramètres de la maille à

 $0,50 \times 0,30 \times 0,15 \text{ mm}$

dans le méthanol

Source du cristal: cristallisé

l'aide de 25 réflexions

 $\lambda = 1.5418 \text{ Å}$

Partie expérimentale

Données cristallines C42H54O3 $M_r = 606.89$ Triclinique ΡĪ a = 12,509 (5) Åb = 13,139 (5) Å c = 12,197 (5) Å $\alpha = 109,77 (4)^{\circ}$ $\beta = 104,77 (4)^{\circ}$ $\gamma = 96,42 (4)^{\circ}$ $V = 1780,43 \text{ Å}^3$ Z = 2 $D_x = 1,132 \text{ Mg m}^{-3}$ Collection des données **Diffractomètre Philips** PW1100 Balayage flying stepscan (logiciel Philips) Pas de correction d'absorption 6379 réflexions mesurées 6060 réflexions

indépendantes 3474 réflexions observées $[F > 6,0\sigma(F) \text{ et } 0,053]$ $< \sin\theta/\lambda < 0.540 \text{ Å}^{-1}$]

Affinement

Affinement basé sur les F R = 0,066wR = 0.063S = 3,8923474 réflexions 406 paramètres Tous les paramètres des atomes d'hydrogène affinés w = 1 $(\Delta/\sigma)_{\rm max}$ = 0,070

Tableau 1. Coordonnées atomiques et facteurs d'agitation thermique isotrope équivalents ($Å^2$)

$B_{\mathrm{\acute{e}q}} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$								
0	<i>x</i>	y o o o o o		z	Béq			
CI	0,2824 (3)	-0,0298 (3) 0,3	3662 (3)	3,0(1)			
C2	0,2222(3)	-0,1001 (3) 0,2	482 (3)	3,3(1)			
C3	0,1140 (3)	-0,1642 ((3) 0,2	201 (3)	3,3(1)			
C4 C5	0,0097 (3)	-0,1554 (3) U,2	145 (4)	3,4 (1)			
C5 C6	0,1285(3)	-0,0855 (3) 0,4	1346 (3)	3,1(1)			
C0	0,2355(3)	-0,0222 (3) 0,4	1399 (3)	3,1(1)			
074	0,0813(3)	-0,0727 (4) 0,2	(4)	3,4(1)			
COA	0,1195(2)	0,0091 (3) U,C) 3 3 2 (3) 2 1 2 (4)	4,5(1)			
C04	-0,0110 (3)	-0,1010 (3) U,2	212 (4)	3,7(1)			
CIA	-0,0584 (3)	-0,1586 (4) 0,6	083 (4)	3,9 (2)			
CIUA	-0,1544(4)	-0,2349 (4) 0,0	NO62 (4)	4,1 (2)			
CI24	-0,1790 (4)	-0,2128 (4) 0,7	120 (5)	5,0(2)			
C12A	-0,2642(3)	-0,2815 (0) U, / 7) O (109(7)	7,9(3)			
CIAA	-0,3047(7)	-0,3301 (/) 0,5	(9)	13,3 (4)			
C14/1	-0,3133 (7)	-0,4028 (0) 0,2 4) 0,2	123(7)	12,2(4)			
CIGA	-0,2212(4)	-0,3332 (4) 0,4	8/1 (5)	5,5(2)			
C174	-0,1448(3)	-0,4133 (4) 0,4	401 (0)	7,2 (3)			
C194	-0,2729 (4)	-0,2942 (4) (,3 5) (,3	1037 (3)	5,9(2)			
C7P	-0,1120(3)	-0,1216 (3) 0,0 3) 0,2	342 (5) 1002 (4)	0,7(2)			
078	0,3983(3)	0,0410 (3) 0,3 3) 0,5	992 (4)	3,4 (1)			
	0,4427(2)	0,1105 (2) 0,5 4) 0,5	025 (3)	4,5 (1)			
COP	0,4331 (3)	0,0237 (4) 0,3	044 (4)	4,1 (2)			
C10P	0,5527(3)	0,08/1 (3) (,3 3) (,3	228 (4)	3,6(1)			
CIUD	0,0191 (3)	0,0700 (3) 0,2 4) 0,1	367 (4)	3,4 (1)			
CID	0,0403 (3)	-0,0209 (4) 0,1	/60 (4)	3,8(1)			
	0,7100 (4)	-0,0310 (4) 0,0	893 (4)	5,3(2)			
	0,7402 (7)	0,0721 (275 (10)	10,0 (4)			
C14D C15D	0,7309 (10)	0,1032 (0) 0,1	375(10)	10,2 (0)			
C15D C16D	0,0030 (4)	0,1858 (4) 0,2	280 (4)	4,2(2)			
C10B	0,7437(3)	0,2051 (4) 0,3	343 (0) 005 (7)	8,2 (3)			
C192	0,5712(5)	0,2399 (0) 0,1 4) 0,1	903 (7)	9,0(3)			
C16D	0,0034 (4)	-0,1274 (4) 0,1	893 (4) 1001 (4)	4,9(2)			
070	0,0360 (4)	-0,2415 (+) 0,0	901 (4)	4,1(2)			
	0,1050 (3)	-0,2410 (5) 0,0 4) 0,0	129 (3)	7,5(1)			
	-0,0309(3)	-0,3192 (4) 0,0	630 (4) 632 (4)	4,1 (2)			
C10C	-0.1026(3)	-0,3990 (4) -0,0	144 (4)	4,5(2)			
	-0,1920(3) -0,2034(3)	-0,4001 ((1) = 0,1	271 (4)	4,0(1)			
C12C	-0.3061(4)	-0,5012 ((1) -0,2	271(4)	4,0(1)			
CISC	-0.3871(6)	-0,6509 (-0,3	338 (7)	130(4)			
CIAC	-0.3847(6)	-0,5891 (7) -0,2	<i>4</i> 11 (7)	15,7 (4)			
CISC	-0.2837(4)	-0.4951 (4) _00	512 (4)	50(2)			
C16C	-0.2349(5)	-0,5160 (-0,0	641 (6)	75(2)			
C17C	-0.3282(4)	-0,3808 (5) _00	101 (5)	60(2)			
CIRC	-0.1155(4)	-0,5616 (4) _02	016 (<i>d</i>)	5 2 (2)			
CIUC	-0,1155 (4)	-0,5010 (-0,2	910 (4)	5,2 (2)			
-	Fableau 2. I	Paramètres	géométri	ques (Å, '	°)			
C1-C2		1,373 (4)	C8 <i>B</i> —C9 <i>B</i>		1,319 (6)			
C1C6		1,392 (6)	C9B-C10B		1,476 (7)			
C1C7B		1,514 (5)	C10B-C111	8	1,334 (6)			
C2C3		1,397 (5)	C10B-C15	B	1,538 (7)			
C3-C4		1,382 (6)	C11B-C18	3	1,493 (7)			
C3–C7C		1,491 (5)	C11B—C12	3	1,515 (7)			
C4—C5		1,386 (5)	C12B-C13	B	1,462 (10)			
C5-C6		1,395 (5)	C13B-C14	B	1,249 (11)			
C5—C7A		1,504 (7)	C14B-C15	B	1,512 (14)			

$c_1 - c_2$	1,3/3(4)	C8B-C9B	1,319 (6)
C1C6	1,392 (6)	C9B-C10B	1,476 (7)
C1C7B	1,514 (5)	C10B—C11B	1,334 (6)
C2C3	1,397 (5)	C10B—C15B	1,538 (7)
C3—C4	1,382 (6)	C11BC18B	1,493 (7)
C3–C7C	1,491 (5)	C11B—C12B	1,515 (7)
C4—C5	1,386 (5)	C12B—C13B	1,462 (10)
C5-C6	1,395 (5)	C13B-C14B	1,249 (11)
C5—C7A	1,504 (7)	C14B—C15B	1,512 (14)
C7A—O7A	1,213 (4)	C15B—C17B	1,499 (9)
C7A—C8A	1,469 (6)	C15BC16B	1,525 (6)
C8A—C9A	1,328 (7)	C7C07C	1,218 (6)
C9A—C10A	1,465 (7)	C7C—C8C	1,478 (6)
C10A—C11A	1,358 (8)	C8C—C9C	1,312 (5)
C10A-C15A	1,532 (5)	C9CC10C	1,457 (5)
C11A—C18A	1,508 (6)	C10C-C11C	1,346 (6)
C11A—C12A	1,527 (9)	C10C-C15C	1,541 (7)
C12A—C13A	1,498 (10)	C11C—C12C	1,503 (5)
C13A—C14A	1,335 (13)	C11C-C18C	1,506 (7)
C14A—C15A	1,549 (11)	C12C-C13C	1,482 (11)
C15A—C17A	1,519 (9)	C13C—C14C	1,194 (11)
C15A—C16A	1,545 (9)	C14CC15C	1,534 (8)
C7 <i>B</i> —O7 <i>B</i>	1,214 (4)	C15C—C16C	1,512 (9)
C7B-C8B	1 471 (7)	C15C - C17C	1 515 (8)

C2C1C6	119,4 (3)	C8B—C9B—C10B	127,5 (3)
C2-C1-C7B	122,6 (4)	C11B-C10B-C9B	122,0 (4)
C6-C1-C7B	118,1 (3)	C11BC10BC15B	123,5 (4)
C1-C2-C3	121,4 (4)	C9BC10BC15B	114,4 (4)
C4—C3—C2	118,3 (3)	C10B-C11B-C18B	125,3 (5)
C4—C3—C7C	124,3 (3)	C10B-C11B-C12B	121,6 (5)
C2—C3—C7C	117,3 (4)	C18B—C11B—C12B	113,0 (4)
C3-C4-C5	121,7 (3)	C13B-C12B-C11B	114,3 (5)
C4C5C6	118,7 (4)	C14B—C13B—C12B	123,0 (*)
C4C5C7A	123,0 (3)	C13B—C14B—C15B	128,0 (9)
C6-C5-C7A	118,2 (3)	C17B-C15B-C14B	110,1 (6)
C1C6C5	120,5 (3)	C17B—C15B—C16B	107,7 (4)
O7A—C7A—C8A	122,6 (4)	C17B—C15B—C10B	110,8 (4)
O7A—C7A—C5	120,0 (4)	C14B—C15B—C16B	109,7 (5)
C8A—C7A—C5	117,4 (3)	C14B—C15B—C10B	109,2 (4)
C9A—C8A—C7A	122,0 (3)	C16BC15BC10B	109,4 (4)
C8A-C9A-C10A	130,2 (3)	07CC7CC8C	120,2 (3)
C11A-C10A-C9A	116,8 (3)	07C-C7C-C3	119,5 (4)
C11A-C10A-C15A	123,4 (5)	C8CC7CC3	120,4 (4)
C9A-C10A-C15A	119,8 (5)	C9C—C8C—C7C	120,4 (5)
C10A-C11A-C18A	125,7 (5)	C8C-C9C-C10C	134,0 (5)
C10A-C11A-C12A	120,7 (4)	C11C-C10C-C9C	117,6 (4)
C18A-C11A-C12A	113,7 (5)	C11C-C10C-C15C	122,2 (3)
C13A—C12A—C11A	112,3 (7)	C9CC10CC15C	120,2 (4)
C14A-C13A-C12A	113,3 (7)	C10C-C11C-C12C	122,9 (4)
C13A—C14A—C15A	118,5 (7)	C10C—C11C—C18C	124,7 (4)
C17A-C15A-C10A	111,1 (4)	C12C-C11C-C18C	112,3 (4)
C17A-C15A-C16A	110,1 (5)	C13C-C12C-C11C	112,5 (4)
C17A-C15A-C14A	111,2 (5)	C14CC13CC12C	123,8 (7)
C10A-C15A-C16A	110,8 (4)	C13C—C14C—C15C	127,4 (8)
C10A-C15A-C14A	109,0 (5)	C16C—C15C—C17C	109,5 (5)
C16A-C15A-C14A	104,5 (5)	C16C—C15C—C14C	110,7 (6)
O7B—C7B—C8B	121,9 (4)	C16C-C15C-C10C	109,8 (4)
O7B—C7B—C1	119,6 (4)	C17C—C15C—C14C	106,7 (5)
C8B-C7B-C1	118,4 (3)	C17C—C15C—C10C	111,5 (5)
C9B-C8B-C7B	122.3 (3)	C14C—C15C—C10C	108.6 (5)

La structure a été résolue avec le programme *SHELXS*86 (Sheldrick, 1985) et l'affinement avec une version modifiée de *ORFLS* (Busing, Martin & Levy, 1962). Pour les figures, utilisation du programme *ORTEP*II (Johnson, 1976). Ordinateur: IBM 3090 du CIRCE sous le système d'exploitation AIX/370.

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope et des coordonnées des atomes d'hydrogène ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 71759: 33 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre. [Référence de CIF: DU1065]

Références

- Addae-Mensah, I., Waibel, R. & Achenbach, H.(1985). Liebigs Ann. Chem. pp. 1284-1287.
- Berkovitch-Yellin, Z. & Leiserowitz, L. (1984). Acta Cryst. B40, 159-165.
- Busing, W. R., Martin, K. O. & Levy, H. A. (1962). ORFLS. Rapport ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, EU.
- Dalvi, R. R. & Sere, A. (1988). Ind. J. Crude Drug. Res. 26, 117-120. Diallo, A., Vanhaellen-Frastré, R. & Vanhaelen, M. (1991). Phytochem-
- istry, 30, 4153–4156.
 Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- O'Connor, A. H. (1973). Acta Cryst. B29, 1903-1909.
- Sheldrick, G. M. (1985). SHELXS86. Programme pour la Détermination des Structures Cristallines. Univ. de Göttingen, Allemagne.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- Thackeray, M. M. & Gafner, G. (1975). Acta Cryst. B31, 335-338.

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved Valla, A., Andriamialisoa, Z., Giraud, M. & Ginderow, D. (1993). Naturwissenschaften. Soumis.

Wolga, J. (1987). Eur. Patent FR 0 300 887.

Acta Cryst. (1994). C50, 576-578

12-Methyl 9-Hydroxymethyl-9,10-dihydro-9,10-ethenoanthracene-11,12-dicarboxylate Lactone

JIANXIN CHEN, PHANI RAJ POKKULURI, JOHN R. SCHEFFER AND JAMES TROTTER

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

(Received 4 May 1993; accepted 6 October 1993)

Abstract

The structure of an achiral ester-lactone, $C_{20}H_{14}O_4$ (1), which crystallizes spontaneously in space group $P2_12_12_1$, has been determined. Solid-state photolysis gives two products, one of which is produced as a racemate, while the other is formed in near-quantitative enantiomeric excess; the optical activity of the latter product probably results from intermolecular steric effects.

Comment

The general molecular structure and dimensions of (1) are similar to those of related materials (Pokkuluri, Scheffer & Trotter, 1993). The carboxyl groups are both conjugated with the C11=C12 double bond; the C11-C12-C15-O4 torsion angle is -157.2 (3)° [cos²(angle) = 0.85] and C12-C11-C13-O2 is +4.0 (6)° [cos²(angle) = 0.995] [cos²(angle) is a measure of the amount of conjugative interaction]. The five-membered lactone ring is a distorted C14-envelope [maximum ring torsion angle 10.8 (4)°].

Compound (1) crystallizes in space group $P2_12_12_1$ and so appears to resolve spontaneously on crystallization (although anomalous-dispersion terms are not large enough to enable possible twinning to be checked). Solution photolysis of (1) produces only racemic (2), while photolysis of single crystals produces racemic (2) (87%) plus optically active (3) (13%) (Chen, Pokkuluri, Scheffer & Trotter, 1990). The preponderance of photoproduct (2) can be rationalized on the basis of intramolecular steric repulsions between the C14 H atoms and the H atoms bonded to C1 and C8 [H14A \cdots H1 = 2.43 (8) (not too short), H14B \cdots H8 = 2.06 (6) Å (very short)]. These repulsions are relieved by bond formations C11 \cdots C8a or C11 \cdots C9a, which are required to form the